Приветствую Вас Гость • Регистрация • Вход • RSS
Четверг, 8.12.2016
Главная » Файлы » Қазақша рефераттар » Физика,механика [ Добавить материал ]

Фурье қатары


Оқушылар,студенттер,мұғалімдер,сайт қолданушылары өз материалыңызбен бөліссеңіз қуанышты болатын едік!

16.02.2014, 13:51

Фурье қатары

 

ХІХ ғасыр басында француз математигі Жан Батист Фурье синус пен косинустардың қосындысынан құралатын Т периодты әрбір периодтық g(t) функциясы бір қатарда болуы мүмкін (мүмкін, шексіздік күйінде) екнін дәлелдеді:

Бұл жерде / = 1 / T – основная частота. (гармоника), а және b синус пен косинустың амплитудасы п гормоникасы, ал с  константа функциясының осы жолмен қойылуы Фурье қатары деп аталады. Фурье қатарына қойылған  функция осы қатардағы элементтермен қайта қалыптасып отырады, яғни бұл жердегі Т  периодты гормоника амплитудасы белгілі, осыдан шыққан функцияның қорытындысы қатар сомасымен қайта қалыптасып отырады. (2.1)

     Соңы созылмалы ақпараттық сигналды (барлық ақпараттық сигналдардың соңы созылмалы болады) Фурье қатарына қоюға болады, егерде сигнал шексіздік күйінде қайталанып отыратын болса (яғни Т дан екі Т ға дейінгі интервал толығымен 0ден Г дейін қайталанып отыратын болса және т.б)

     Әрбір g(t) фунциясының а амплитудасы есептелінуі мүмкін. Бұл үшін қосындының оң жағы мен сол жағын (2.1) sin (2nkft) көбейтіп 0 ден Т дейін интегралдау керек. Өйткені:

     Бұдан бір қатар қалатын болғандықтан: а мен b қатары толығымен бірге жойылып кетеді. Сондай ақ, (2.1) cos  көбейтіп 0ден Т дейінгі уақытты интеграттап b- ның тауып аламыз. Егер тендеудің екі жағын интеграттасақ оны өзгертпей ақ, онда с константаның мәнән табуға болады. Бұлардың қорытындысы төмендегідей болады. 


Похожие материалы

Рахмет ретінде астында тұрған жарнамалардың біреуін басуды сұраймын!

Категория: Физика,механика | Добавил: Admin
Просмотров: 639 | Загрузок: 74 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]